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Improved numerical technique to calculate statistical Coulomb blurring
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This paper studies the effects of Coulomb blurring in charged-particle optics using a method that
combines Monte Carlo techniques with analytical calculations. A correction factor for the analytical
theory of Jansen and Kruit is obtained. This approach strongly enhances the accuracy of the method,
while maintaining the speed of calculation. The method gives good agreement with Monte Carlo
simulations. The effects of aperturing are also included. ©2003 American Institute of Physics.
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I. INTRODUCTION

The calculation of statistical Coulomb interactions
charged-particle optical systems has been a long-stan
problem.1–7 One can roughly distinguish two approache
analytical calculations and Monte Carlo simulations.8 In
Monte Carlo simulations, one takes a sample of partic
with random initial conditions~although satisfying the beam
characteristics!. The trajectories of these particles are th
numerically evaluated as they go through the column.
though straightforward, the calculations are often time c
suming and are usually not performed in the actual des
process. Analytical approaches are much faster, but they
ally rely on a number of assumptions needed to obtain a
lytical results in certain limits. One of the most extensi
theories on Coulomb blurring is that of Jansen.4 Here the
values for the Coulomb interaction are based on analyt
results obtained for the limitsr beam→0 and`, wherer beamis
the beam radius. Values for the Coulomb interaction for
termediater beamvalues are obtained via interpolation. It wa
already noted4,5 that especially in the intermediate regim
deviations exists. One of the reasons for these deviation
the fact that the Coulomb interactions are calculated for
axis trajectories, whereas the statistical Coulomb for
could be different off axis. With the advances in charge
particle optics and the use of brighter sources, Coulomb b
ring becomes increasingly a limiting aberration. For e
ample, for standard Ga liquid-metal-ion-source column9

Coulomb blurring is estimated to be the largest or seco
largest aberration over the current range from 1 pA to 1mA.
For many applications the column is run in the intermedi
regime, where the largest deviations are expected. In ord
obtain more reliable estimates of the Coulomb blurring,
show here how numerical Monte Carlo like results can
incorporated in an analytical calculation. This approa
strongly enhances the accuracy of the method, while m
taining the speed of calculation.

The paper is organized as follows. We start with a br
explanation of the analytical calculation of Coulomb blu
ring. We then show how to incorporate Monte Carlo li

a!Electronic mail: veenendaal@physics.niu.edu
6380021-8979/2003/93(10)/6381/5/$20.00

Downloaded 24 Jun 2003 to 164.54.44.40. Redistribution subject to AI
ng
:

s

l-
-
n
u-

a-

al

-

is
-
s
-
r-
-
,
-

e
to

e
e
h
n-

f

results into the analytical approach. We also include the
fects of aperturing. We end with the conclusions.

II. STATISTICAL COULOMB INTERACTIONS

When dealing with Coulomb forces in charged-partic
optics, one often divides the interaction into two comp
nents: the longitudinal one, which affects the particle alo
the optical axis, causes a change in the kinetic energy lea
to chromatic effects~this is usually known as the Boersc
effect1!, and the radial component of the particle’s positio
perpendicular to the optical axis, which gives rise to traje
tory displacements.2 In this article we focus on the latte
since the former can often be effectively included in the
trinsic energy spread of the source. For the radial compon
of the particle position, we are interested indr/dz resulting
from the effective Coulomb forceFr

blur acting on the particle.
The change inr is determined by Newton’s law, given by

r 95
d2r

dz2 5S dt

dzD
2 d2r

dt2
5

1

mvz
2 ~Fr

e.s.1Fr
blur!, ~1!

whereFr
e.s. is the force due to the lens fields, which we ta

here to be electrostatic. Generally, the stochastic Coulo
forces are much smaller thanFr

e.s., and we therefore trea
them as a perturbation. The unperturbed rays can be fo
from the usual ray equation10

r 91
V8

2V
r 81

V9

4V
50, ~2!

whereV is the axis potential. The general lowest-order t
jectory can be written as a sum of two independent soluti
of the ray equation,

r ~z!5aX~z!1bY~z!, ~3!

where the boundary conditions forX and Y are given by
X(z0)50, X8(z0)51 andY(z0)51, Y8(z0)50, with z0 the
position of the virtual source. Thus, the physical interpre
tions of a and b are the half-beam opening angle at t
source and the virtual source size, respectively.

The effect of statistical Coulomb interactions can be
cluded by the method of variation of parameters. The eff
1 © 2003 American Institute of Physics
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of the Coulomb interactions in a thin beam slice at a cert
position z can be taken into account by requiring that t
trajectory is continuous,

dablur~z!X~z!1dbblur~z!Y~z!50, ~4!

and that the change in trajectory is determined by the
chastic force in the radial direction working on the partic
r blur9 5Fr

blur/(mvz
2),

dablur~z!X8~z!1dbblur~z!Y8~z!5r blur9 ~z!. ~5!

From this set of equations, one easily obtains

dbblur~z!52
r blur9 ~z!X~z!

X8~z!Y~z!2X~z!Y8~z!
~6!

52r blur9 ~z!X~z!AV~z!/V0. ~7!

The total ray is then given by

r ~z!5@a1ablur~z!#X~z!1@b1bblur~z!#Y~z!, ~8!

with the coefficients

bblur~z!5E
z0

z

dz̃dbblur~ z̃!, ~9!

and likewise forablur. The contribution of Coulomb blurring
to the total spot size is now given byr blur5Mbblur(zfoc),
wherezfoc is the focal point andM5Y(zfoc) the magnifica-
tion.

The idea behind the analytical calculation of stochas
Coulomb interactions is finding a good estimate ofFr

blur .
Since we are dealing with statistical quantities there i
probability distribution function of forces. The value that w
shall use here is the medianFr50

blur of the force distribution
function, where thea50 value for a probability functionr(a)
in two dimensions is defined by

E
0

a50
r~a!2pa da5

1

2
, ~10!

with a5Aax
21ay

2. Thus thea50 value contains 50% of the
probability distribution function. We prefer to use theFr50

blur

value instead of the full width at half maximum~FWHM! of
the distribution function. The reason for this is that in certa
limits the probability function becomes very narrow and t
FWHM then gives a poor estimate of the forces working
the particle.

The next step is to derive ther 50,blur9 values. Since spee
of calculation is of importance, one does not like to calcul
probability distribution functions too often. Jansen4 uses for
his r 50,blur9 values an interpolation between exact results t
can be obtained in the limitsr beam→0 and`. The relevant
parameters for the distribution function of forces arer beam

and the linear particle density

l5
I

evz
5Am/2e3V I, ~11!

wherel21 gives the average distance between the parti
in the z direction.

We now want to obtain an estimate of the force in t
radial direction,
Downloaded 24 Jun 2003 to 164.54.44.40. Redistribution subject to AI
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Fr5
e2

4p«0

dr

d3 , ~12!

whered is the average particle distance anddr the average
distance in the radial direction. In the limitr beam→0 ~often
called the pencil regime; see Fig. 1!, dr→r beam and d
→l21. For r 50P9 , we find then

r 50P9 5cP

m3/2

«0e7/2

I 3r beam

V5/2 . ~13!

In the opposite limit,r beam→` ~the Holtsmark regime;
see Fig. 1!, we haved5&dr5&dz5(pr beam

2 l21)1/3, giv-
ing

r 50H9 5cH

m1/3

«0

I 2/3

r beam
4/3 V4/3. ~14!

Exact calculations4 show that the constants arecP50.435
and cH50.127. Interpolation between the two different g
ometries is done according to4

1

r 50A9
5

1

r 50H9
1

1

r 50P9
. ~15!

In a similar way, one can define the analytical value for t
force asF50A5mvz

2r 50A9 .
Although this interpolative scheme usually gives t

right order of magnitude, it is quite often not accura
enough for design purposes. The major discrepancies o
in the intermediate region wherer 50H9 and r 50P9 are of the
same order of magnitude. A different approach to calculat
Coulomb blurring is the use of Monte Carlo simulation. He
one takes a random bunch of particles that satisfy the des
beam characteristics and traces them through the colu
This gives better results than the analytical method descr
above, but Monte Carlo calculations are generally time c
suming and lack the ease of use of the analytical appro
The latter method can, however, be significantly improv
by a better estimate of ther 509 value. In the remainder of the
paper, we shall describe how this quantitity can be evalua
numerically and be incorporated as a correction factor i
the analytical method.

III. NUMERICAL CALCULATION OF r 509

To obtain the value ofr 509 , one needs to determine th
distribution functions ofr 509 as a function of the distance t
the optical axisr. This can be done by taking a cylinder wit
beam radiusr beamand of sufficient lengthl, i.e., long enough
that finite size effects can be neglected~see Fig. 2!. A probe

FIG. 1. Schematic presentation of the beam in the pencil and Holtsm
regimes.l is the linear particle density.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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particle is then positioned in the middle of the cylinder a
distancer from the axis. The cylinder is then filled with
particles of massm corresponding to certain beam charact
istics, i.e.,l and r beam. The stochastic force on the prob
particleFstoch is then calculated. Note that this force can
split into a longitudinal componentFi

stoch5Fz
Boerschẑ and a

perpendicular componentF'
stoch. This procedure is repeate

until sufficient statistics has been obtained for the probab
function of F'

stoch. The probability distribution become a
most independent of the number of particles for more th
approximately 50–100 particles.~Calculations have bee
done with many more particles.! This shows that the statis
tical Coulomb force is mainly determined by interactio
with particles that are close to the test particles.

Figure 3 shows typical probability distribution function
in the Holtsmark regime for the forces in the radial directio
We have used herel21546mm. For Ga ions, this corre
sponds toV530I 2(nm) kV, for example, 30 kV and 1 nA
Calculations are done forlr beam521.7. We see two clea

FIG. 2. Cylindrical beam used in the calculations of the force probab
distribution functions. The cylinder with radiusr beamis filled randomly with
particles corresponding to a certain linear particle densityl. The forces are
then calculated for test particles that are placed in the middle of the cyli
at a distancer from the symmetry axis.

FIG. 3. Probability distributions of the Coulomb force on a particle at d
tancer from the center of the beam, on the left for the radial component
the right for the absolute value after removal of the space charge eff
Calculations correspond tolr beam521.7. The actual calculations have be
done for a beam with radiusr beam51000mm, filled with Ga ions with beam
characteristicsV530 kV andI 51 nA.
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effects when moving away from the center toward the ed
of the beam. First, we see that the probability function sh
due to the space charge effect. Secondly, the probab
function becomes asymmetric. Figure 4 gives the probab
distribution function of the radial forces in the pencil regim
A value forlr beam50.11 has been used. At the center of t
beam the probability distribution function is a very narro
peak with long tails. For particles at the edge of the beam
distribution function has become strongly asymmetric. N
the absence of space charge effects.

Since we are interested in the increase in spot size du
Coulomb blurring, we have to separate the effects from
space charge effects. For a homogeneous charge distrib
the force as a result of space charge is

Fr
space~r !5

1

2

en

«0
r 5Ner , ~16!

wheren is the charge density. Due to the proportionality tor,
the effect ofFr

spaceis that of an ideal lens, leading to a defo
cusing. Since this does not directly lead to an increase in s
size we want to remove ther dependence, i.e., determine th
constantNe for a stochastic distribution. For a particular di
tancer from the optical axis we obtain

Ne~r !5
1

r
Fr50

stoch~r !, ~17!

where we use here the one-dimensionala50, given by

E
2`

a50
r~a!da5

1

2
, ~18!

wherer(a) gives the probability of finding quantitya. Thus
50% of theFr

stoch is smaller and 50% of theFr
stoch is greater

er

-
n
ts.

FIG. 4. Calculated probability distribution of the force as a function
distance to the symmetry axis under beam conditionslr beam50.11. The
actual calculations have been done for a cylinder with a radiusr beam

50.1mm filled with Ga ions using a current ofI 55 nA and a beam voltage
of 30 kV.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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thanFr50
stoch(r ). Since there is one focus, we can use only o

Ne for all r. We use here a weighted average of theNe(r ):

Ne~a!5
1

p~arbeam!
2 E

0

arbeam
Ne~r !2pr dr . ~19!

We take into account here the effect of aperturing, by in
grating not over the entire beam but only up tor 5arbeam

with aP@0,1#, i.e., we calculate the effects on only the pa
ticles that actually contribute to the probe current.

Now, we define the Coulomb blurring force as the to
stochastic force minus the space charge contribution, i.e

Fblur~r !5Fstoch~r !2Fspace~r !

5@Fr
stoch2Ne~a!r # r̂1Fw

stochŵ. ~20!

The right side of Fig. 3 gives the probability functio
r(Fblur), whereFblur5uFbluru, usingNe(1). Weclearly see a
narrowing of the probability function for largerr, which in-
dicates that the Coulomb blurring is less at the edge of
beam. From the probability function for a particularr
,arbeam, we can derive theF50

blur(r ,a). The averager 50,blur9
is then given by

r 50,blur9 ~l,r beam,a!5E
0

arbeam
dr 2pr

F50
blur~r ,a!

2p~arbeam!
2eV

.

~21!

This gives a correction factor to the original analyticalr 50A9
from Eq. ~15!,

C~lr beam,a!5
r 509 ~l,r beam,a!

r 50A9
. ~22!

Note that, apart from the aperture constanta,
C(lr beam,a) depends only onlr beam. This can be under-
stood as follows. Changing the values ofr beam andl effec-
tively corresponds to a renormalization of ther andz axes.
When r and z are both scaled by a factork, the only thing
that should happen to the radial Coulomb forceFr5r /(r 2

FIG. 5. The correction valueC(r beam,a) as a function oflr beam. Curves are
given for different aperture valuesa.
Downloaded 24 Jun 2003 to 164.54.44.40. Redistribution subject to AI
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1z2)3/2 is a renormalization byk22. However, the forces
F50P and F50H already scale this way. Therefore, distrib
tions with equallr beamshould have the same correction fa
tor. The correction factors take into account the effects o
finite size of the beam and the different configurations of
particles with respect to each other off axis compared to
axis. Since the correction factor does not depend onm, I, V,
and r beam, but only on lr beam, the calculational effort is
strongly reduced. The functionC(lr beam,a) can be simply
tabulated and intermediate values can be interpolated.

Results forC(lr beam,a) are shown in Figs. 5 and 6. Fo
C(lr beam,a)→1 the analytical theory is valid. Note tha
substantial deviations are found in the intermediate reg
where the interparticle distanced is comparable to the beam
radiusr beam. Solving r 50H9 5r 50P9 we find that the intermedi-
ate regime occurs for

lr beam5
I

evz
r beam>0.417, ~23!

whereas the minimum is found aroundlr beam51. The cor-
rection is less fora→0, i.e., for particles close to the optica
axis. Including particles at the edge of the beam in the pr
forming current (a→1) increases the deviations from th
theory of Jansen.4 Figure 6 shows the dependence on ap
turing. In the Holtsmark regime, particles at the edge of

FIG. 6. The correction valueC(lr beam,a) as a function of the aperture
parametera. Curves are given for differentlr beam.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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beam have a narrower probability function than particles
the center of the beam. A physical explanation for this is t
at the edge of the beam there are mainly statistical inte
tions in one direction, thereby narrowing the probability d
tribution. In addition to that the distribution also becom
asymmetric~see Fig. 3!. In the pencil regime the distribution
becomes wider whenr→r beam. In this regime, the interac
tions are mainly in the longitudinal direction. Forces in t
radial direction are determined by the angledrl. For a par-
ticle on the axis the maximumdr is equal tor beam. However,
for a particle at the edge of the beam, the maximumdr can
be twice as large~see Fig. 1!. This results in largerFr .

Figure 7 shows a comparison of Monte Carlo simu
tions with analytical calculations with and without corre
tion. The Monte Carlo calculations were done using a fa
tree algorithm for calculating the Coulomb interactions11 and
a fifth-order Runge-Kutta integration method with variab
step size.12 In the Monte Carlo method the difference fro
the unperturbed trajectories isDr i(z). However, this quantity
is not very useful in estimating what the final spot size w
be. More information can be obtained by separating
value ofb ih , whereh5x,y, by

b ih
stoch~z!52

Dh8~z!X~z!2Dh~z!X8~z!

Y8~z!X~z!2Y~z!X8~z!
. ~24!

This gives a two-dimensional distribution ofb i
stoch. From

this, we have to remove the space charge effects in a
very similar to what was done forF50

blur in Eqs. ~17!–~20!.
Finally, we can obtain theb50

MC value, which should be com
pared with theb50

blur obtained analytically. The spot size
given byd50

blur5Mb50
blur(zfoc), whered50 is the spot size into

which 50% of all the particles fall.
As an example, we show here the results for a

focused-ion-beam system with a column voltage of 30
and an extraction voltage of 12 kV. The system has an ac

FIG. 7. Comparison betweenb50
blur obtained using Monte Carlo, analytica

~theory of Jansen!, and corrected analytical calculations.
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erating lens at 10 mm (V1555 kV) and a decelerating lens a
300 mm (V2510 kV). The current is 1 nA and the system
at its optimum magnification ofM50.36. From Fig. 7, we
see that, without correction, the analytical calculation
verely overestimates the Coulomb blurring. With correctio
very good agreement is found between the analytical res
and the Monte Carlo simulations.13

Another aspect that differs is that aperturing can red
the Coulomb blurring in the Holtsmark regime. This is n
what one would normally expect sincer 50H9 ;I 8, where I 8
5I /pr beam

2 is the current density, which does not chan
when passing through an aperture. The change inr 9 is a
direct result of the differentr 9 values for off-axis trajecto-
ries, an effect not taken into account in the theory of Jans4

This can be clearly seen in Fig. 6. In the Holtsmark regim
i.e., lr beam@1, the correction valueC(lr beam) decreases
when the aperture parametera approaches unity. This is a
result of the narrower probability distribution function at th
edge of the beam. Therefore, after aperturing, the pr
forming electrons are closer to the edge of the beam and
the Coulomb blurring is smaller.

IV. CONCLUSIONS

We have shown that improved estimates of Coulo
blurring can be obtained by using a combination of nume
cal and analytical techniques. The theory is based on
numerical evaluation of probability distribution function
whose widths are used in the analytical evaluation of
Coulomb blurring. This leads to a correction fact
C(lr beam,a) to the theory of Jansen.4 Note that this depends
only onlr beam. This has the great advantage that the corr
tion factor can be used as a simple interpolative function
does not need to be recalculated for every change ofV, I, m,
or r beam. We have also included the effects of aperturin
This approach removes some of the deficiencies of the the
of Jansen,4 especially in the intermediate regime. These
sult from inaccuracies in the interpolative scheme and
restriction to trajectories on the optical axis. We find go
agreement with Monte Carlo simulations.
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